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EXECUTIVE SUMMARY 
 
A new methodology of data mining is developed to find relationships between Air Force 
Weather Agency (AFWA) WRF 15-km atmospheric model forecast data and low-level 
turbulence.  Archives of historical model data forecast predictors at model gridpoints and 
verifying pilot reports (PIREPS) of turbulence have been collected.  The new data mining 
method, Random Nearest Neighbor (RNN), will be shown to be capable of extracting nearly the 
maximum possible amount of information from a multiple predictor, single predictand dataset.  
Relationships between WRF model predictors and PIREPS were developed using the new data 
mining methodology. 

 
The new methodology was inspired by the Random Forest (RF) method (Breiman 2001).  The 
RF method recognizes weak points in the use of decision trees in forecasting.  RF uses random 
numbers to modify or “perturb” decision trees.  It creates approximately 500 decision trees, thus 
an “ensemble” of them, or a “forest” of trees, and uses either the average or the most frequent 
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result as the forecast value.  The process is analogous to ensemble modeling known to Air Force 
and civilian numerical weather prediction. 
 
The RNN approach of this report utilizes random numbers, but bypasses the creation of decision 
trees.  In RNN, a random gridpoint is selected from the historical archive.  “Similar” gridpoints 
in the archive are selected.  This process is repeated until the historical archive is completely 
sampled.  Each grouping of similar gridpoints is a “neighborhood”.  The average amount of 
turbulence that occurs with each neighborhood is found from the historical archive.  To make an 
operational forecast, the corresponding neighborhoods are applied to real-time model data.  Thus 
RNN is a nearly direct method of looking up the historical amount of turbulence that should be 
forecast, without curve fitting or fitting data into an arbitrary data structure, while taking into 
account combinations of multiple predictors. 
 
In this report, the RNN methodology is used to achieve nearly the best possible turbulence 
forecast from a domain consisting of predictors at model gridpoints and corresponding 
verification from PIREPS.  Two experiments using RNN will demonstrate that RNN almost 
completely accomplishes the goal of accurately re-creating non-linear relationships of 
combinations of predictors with varying combinations of values.  In the first experiment with 
real data, it will be seen that RNN accurately linearizes a predictor to the predictand.  The second 
experiment uses a synthetic dataset.  It will be seen that RNN accurately re-creates that synthetic 
dataset.  RNN is then utilized with the real dataset.  After demonstrating the effectiveness of the 
RNN methodology, it will be seen that low-level turbulence has limited forecastability using the 
turbulence dataset used in this study. 
 
The goals of this technical report are three-fold: 1) to introduce RNN as a data mining 
methodology; 2) to demonstrate its effectiveness in extracting potentially complex non-linear 
multiple-predictor vs. predictand relationships, and 3) the implications of forecasting turbulence.  
Other facets of data mining and statistical forecasting, such as predictor selection techniques, are 
acknowledged but not explored in this report.  An effort is made to explain clearly, to non-
experts in statistics, how RNN works.  Based on the real data results, reasons for limited 
forecastability of turbulence will be proffered. 
 
1. Introduction 
 
Aviation turbulence may the most difficult weather parameter to forecast (in the subjective 
opinion of the author).  As subjective evidence, one can look at typical examples of low-level 
turbulence reports from PIREPS, such as Figures 1 and 6, and find little in the way of patterns.  
Neither Figure 1 nor Figure 6 suggest any obvious large-scale trough/ridge pattern, or frontal 
systems.  An unpublished experiment by the author confirmed that turbulent PIREPS from upper 
levels are not randomly spaced, but do indeed have some geographical grouping beyond random 



chance.  However, the statistical validation of the non-randomness of turbulence sheds little light 
on the meteorological causes.  In an effort to understand the forecastability of turbulence, a 
methodology was sought to extract the most information possible from existing weather model 
forecast data. 
 

 

 
Figure 1.  Elevation (in thousands of feet) of turbulence from PIREPS, within 1.5 hours of 
2014 February 26, 15UTC, elevation 0 to 10,000 feet.  Blue: light turbulence, yellow: 
moderate. 
 
Several methodologies exist to create automated statistical or data-mined forecasts based on 
relationships between historical archives of model data and observations that are the target 
forecast.  Regression or curve-fitting are one general type of such a forecast.  Curve-fitting 
methodologies assume that weather events (temperature, lightning, precipitation, turbulence, 
icing, etc.) can be described with some method of curve-fitting.  Data mining methods often 
utilize a data structure as a means of organizing data.  Table 1 lists examples of each statistical 
methodology. 
 



Table 1.  List of common methods of regression and data mining 
methodologies used in physical sciences. 

Regression Data mining 
Multiple linear regression Contingency tables 

Neural network Decision trees 
Logistic regression Clustering 

Principle Component Analysis Self Organizing Maps 
 
 
The goal of these statistical and data mining methodologies is to consider many predictors, 
ranging from several to perhaps hundreds, to combine them to forecast a probability or a value of 
the desired weather element, termed “the predictand” in statistics.  Regression does this by some 
form of line or curve fitting.  The technical form of regression is that the predictand (Y) is fit to a 
function of the predictors (X): Y ~ f(X,Beta), where “Beta” depends on the specific regression 
method used.  Neural Networks are another form of curve fitting.  Neural Networks may have 
multiple levels of fitting between the predictors and the predictand, and utilize a sigmoid 
function as the curve to fit (Figure 2).  Model Output Statistics (MOS) is utilized by the National 
Weather Service to forecast many surface and near-surface weather parameters.  MOS utilizes 
multiple linear regression based on multiple years of historical model data and corresponding 
weather observations.  MOS does quite well forecasting surface temperature, dewpoint and other 
surface values, which have a smooth continuum of values, and have nearly linear responses to 
their predictors.  For non-surface challenges such as precipitation or thunderstorms, regression or 
curve-fitting methods can suffer from algebraic instabilities, and assumptions on the nature of the 
data (for example, errors should have a Gaussian distribution) are less valid. 



 

 
     a)                   b) 

Figure 2.  a) Schematic illustration of a neural network (from Figure 3, McCann 1992).  
Predictors (input layer) of the predictand (output layer) go through two levels of weighting.  
Lines illustrate the potential for every predictor to have non-linear interactions with other 
predictors.  b) Sigmoid curve used to fit predictors to predictand(s) in a neural network. 
 
Similarly, data mining methodologies used in weather forecasting also have the goal of relating 
combinations of predictors to the target weather parameter (predictand).  In place of curve fitting, 
most data mining methods have so far relied on some type of data structure as the vehicle to fit 
predictors to predictands.  Decision trees, clustering, and contingency tables (Figures 3, 4, and 5) 
are examples of data mining methodologies.  Decision trees generally use a strategy to 
repeatedly divide data into a favorable event branch and an unfavorable non-event branch, 
repeating the division of data as needed. 
 
Breiman 2001 recognized drawbacks of decision trees, and created the Random Forest (RF) 
methodology to address those weaknesses.  One of the weaknesses of decision trees is that they 
split data into two portions, splitting a dataset where it is most sensitive to the predictand, that is, 
where small change in a predictor value corresponds to larges changes in the predictand.  
Subsequent splitting of the decision tree process provides the opportunity to refine a reduced 
portion of the dataset.  Breiman used a powerful methodology for addressing this weakness.  
Using random numbers, 500 different decision trees were created from approximately 2/3 of the 
historical data record.  From this ensemble of decision trees (the “forest”), a consensus or 
average was derived as an improvement of the “straightforward” decision tree process. 
 

 
 



 
 
 
Figure 3. An example of a decision tree, used to distinguish between linear and cellular 
radar echoes, based on radar image data.  From Figure 1, Gagne et al. 2009. 
 

 
Figure 4.  Clustering in two dimensions.  Colors indicate data points in the same cluster, 
hopefully representing the same kind of physical object.  From “Cluster Analysis”, 
Wikipedia.org. 
 
Contingency tables are another form of data mining.  A table or tables with probabilities of a 
weather parameter from historical data can easily be created and used to forecast future events.  
A difficulty with contingency tables is that beyond three or four predictors, it is extremely 
difficult to fill a 3 or 4 dimensional table, as there is not enough data.  An example of a 
successful four dimensional table was the Air Force Weather Agency (AFWA) Stochastic Cloud 



Forecast Model, which had 10 categories of pressure (i.e., the vertical height coordinate), 
temperature, relative humidity, and vertical velocity, which were used to forecast cloud amount.  
McDonald (personal communication, 2014) noted that the vertical velocity bins had to be 
handled with care, as the distribution of vertical velocity was not very uniform.  In the 
experience of the author, success of contingency tables can depend heavily on the “bin size” of 
the predictors, that is, the range of a predictor value that falls in the same category.  One means 
of handling more than four predictors is to “chain” several contingency tables that are only two 
dimensional (two predictors), as was done by Keller 1982.  Keller has since recognized that this 
process can dilute information, in that the chaining of contingency tables can lose information 
about the earlier combinations of predictors.  It will be seen that the RNN method attempts to 
address this limitation of contingency tables by bypassing the creation of a data structure. 
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Figure 5.  Severe weather probability for given combinations of two predictors; i.e., two-dimensional 
contingency tables.  From Keller 1982. 



 
Data mining methods are appealing in that they optimally provide a forecast of a predictand (the 
weather element that one desires to forecast) based on previously observed values of predictors.  
However, their ability to do so may be limited, either because there is a data structure involved, 
or because the amount of data required can be much more than is feasibly obtainable. 
 
In theory, the Nearest Neighbor (NN, not to be confused with neural networks, which will not be 
mentioned beyond this point) approach is the “best” data-mining methodology, as it utilizes no 
data structure or curve fitting, thus eliminating shortcomings that might come from those 
methods.  Unfortunately, a straightforward implementation of Nearest Neighbor is difficult to 
implement, again because of the possibility of needing to match dozens of possible predictors 
and dozens of predictor bins, resulting in perhaps billions of combinations of data, as explained 
by Wu et al. 2008, chapter 8. 
 
The NN method is a method of data mining that requires, at first glance, more data than can be 
gathered.  If a prediction problem has 10 predictors, and if the predictor values are divided into a 
relatively modest (in the opinion of the author) 10 bins, one requires 10^5, or 100,000 data points 
to store each combination.  Practically speaking, there should be at least 100 or 1000 samples of 
each combination (depending on how much the data points are related or independent of each 
other), therefore the number of gridpoints required becomes 10 to 100 million.  This, the 
“straightforward NN” approach, makes two naïve assumptions: 1) that all combinations of all 
predictors will occur with equal frequency, and 2) that all predictor combinations are equally 
relevant.  In practice, gridpoints with turbulence are much more influential in creating predictor-
predictand relationships.  This paper will demonstrate an approach to NN that does not require 
millions or billions of predictor combinations to be stored. 
 
Inspired by the use of random numbers in the RF methodology, RNN was designed to be able to 
implement the NN algorithm effectively.  A major goal of RNN was to extract information from 
historical data in a very direct way, without using any form of curve fitting or data structures 
(contingency tables, clusters, or decision trees).  Section 2 will describe the weather data used in 
this report.  Details of RNN will be given in Section 3.  Section 4 will test the ability of RNN to 
forecast by performing experiments on real and synthetic data.  Discussion of these RNN 
experiments follow in Section 5.  Section 6 is a summary of key points. 
 
 
2. Data 
 
In this report, the intent is to forecast low-level turbulence that occurs outside of convection.  
Predictors of turbulence were collected from the AFWA WRF 15km model, and corresponding 
PIREPS (the predictand) were collected between 2013 May 18 and 2014 February 5.  At AFWA, 



CONUS runs of the 15km WRF are at 06 and 18UTC.  Since most PIREPS occur between 
12UTC and 03UTC, forecasts projections valid at those times of the day were archived.  Table 2 
lists the model run and valid times.  Table 3 lists the model predictors of low-level turbulence 
that were collected.  For this report, only four of the available predictors were used to emphasize 
the ability of RNN to extract relationships between turbulence predictors and turbulence.  The 
four predictors are boundary layer wind speed, boundary layer lapse rate, a wind shear 
parameter, and a mountain wave parameterization.  Smoothers were applied to the wind shear 
parameter and the mountain wave term, as graphs of the individual turbulence response with the 
smoothed predictors yielded a much better discrimination between low and high values of 
turbulence than without the smoother. 
 

Table 2. Model run and valid times used in 
this study. 

06UTC run 
 

18UTC run 
Fcst hr Valid hour 

 
Fcst hr Valid hour 

6 12 
 

18 12 
9 15 

 
21 15 

12 18 
 

24 18 
15 21 

 
27 21 

18 0 
 

30 0 
21 3 

 
33 3 

 



Table 3. Model predictors collected for forecasting low-level turbulence.  
Asterisks indicate predictors used for the RNN study. 

  BL Wind Speed * Average of 2 levels: approx 0 and 1600m 
Elevation From the 15km gridpoint 
BL Lapse rate * Lapse rate between approx 0 and 1600m 

Max wshear parm 
Wind speed changes with height, max value 
capped 

Max wshear parm lgt smth Same, with light smoother, max value capped 

Max wshear parm no cap 
Wind speed changes w/ height, max value not 
capped 

Max wshear lgt smth no cap  * 
Wind spd changes /w height, light smoother, 
no cap 

Mountain wave area Wind downslope over terrain 
Mountain wave area lgt smth  * Wind downslope, light smoother 
Panofsky index Panofsky index for low-level turbulence 
Richardson Using 0 and 1600 feet as the layer 
Richardson Maximum in the layer 
Richardson Minimum in the layer 
Valid 8-digit date Valid time: 2 digit year, month, day, hour 
Valid hour 0, 3, 12, 15, 18, or 21 

 
 
PIREPS, occurring between 0 and 3,000 meters above ground level were put into the AFWA 
WRF 15km model gridpoint format.  The gridpoint nearest to a light, moderate, and severe 
turbulence report was assigned a value of 1, 2, and 3 respectively.  A heavy smoother was then 
applied with the intention of increasing the areal coverage of the turbulence report, as it is 
believed that the report is representative of an area larger than a single 15km model gridpoint.  
The predictand is therefore neither a probability of turbulence nor the intensity of turbulence 
observed, but a combination of both.  For this report it will be termed the “amount” of 
turbulence.  The author believes that the “amount” is more like a probability than an intensity of 
turbulence.  Figure 6 shows an example of PIREPS expanded and added in this way. 
 
 



 
Figure 6.  Turbulence indicated by PIREPS, 2014, February 28, within 1.5 hours of 
15UTC.  Contours reflect both turbulence intensity and multiple reports, with a heavy 
smoothing operator. 
 
To properly develop and test a statistical relationship, a historical dataset should be divided into 
development and test datasets.  The most basic reasons for this are to test 1) the statistical 
stability and 2) the long-term reliability of the predictor-predictand relationships.  Discussion of 
this subject is continued in Appendix A.  For this study, half of the data was development data, 
with odd-numbered valid dates, and half of the data was the test data, with even-numbered valid 
dates.  An oddity of this dataset is that verification data essentially is duplicated.  Referring to 
Table 2, it can be seen that the 18 UTC run and the following day’s 06UTC run both forecast for 
the period 12UTC to 03UTC on the same day.  The verification data was therefore duplicated, 
while the forecasts model data was likely similar but not exactly the same. 
 
The archived dataset is therefore a collection of predictors and the single predictand, and since 
all data is from model gridpoints or converted to model gridpoints, data elements will be referred 
to as “gridpoints” throughout this report. 
 
Several quality control measures were taken to insure the integrity of the PIREP data.  Gridpoints 
that were beyond the CONUS land boundary (shown in Figure 7) were not used, assuming that 
PIREP density was not as good over the oceans.  PIREPS were quality controlled in several ways 
to insure that a valid data file was received.  One filter requires that at least one turbulence report 
is found over the CONUS; this occasionally discarded a valid case with smooth flying over the 
entire CONUS. 



 
Figure 7.  “CONUS land area”, white. 

 
 
Predictors were “normalized” as follows for utilization by RNN data mining.  Each predictor was 
sorted by its value, and divided into 256 bins, each bin having the same number of occurrences.  
This has several advantages: 

1. The predictor is “normalized” in some sense 
2. Dividing into 256 bins allows the data to be stored as byte values, which is 

computationally faster and takes less computer memory 
3. The predictor units are irrelevant to the software and data mining 
4. The number of bins, 256, is assumed to be sufficient to represent the distribution of 

predictor values and the resulting amount of turbulence, to extract all available 
information content from the model predictor data.  That is, 256 bins is believed to allow 
small changes in predictor values to reflect changes in turbulence probabilities, should 
this situation exist in the real world.  As an example, the spike of turbulence occurrence 
on the high end of the lapse rate predictor “lapsegd”, in Appendix B, occurs in the last 
10-15 bins.  Fewer bins would risk not resolving this spike-shaped response. 

 
Typically in regression forecasting a predictor will be normalized in terms of standard deviations 
from the mean.  Normalization in this way assumes that the predictor data and the probability of 
turbulence follows a Gaussian curve.  The RNN division into 256 bins makes no assumptions 
about the distribution of either the predictor data or the predictand. 
 
A final filtering process was performed on the historical data.  To reduce the amount of data 
considered, 90% of the gridpoints without observed turbulence were discarded.  This was done 
for the following reasons: 

1. Reduce the amount of data to sort and sift with data mining, that is, less data was a time 
saver. 

2. It is believed that the turbulence gridpoints have more statistical influence, i.e., relevance, 
on the predictor-predictand relationships than the non-turbulent gridpoints 

3. It is believed that the non-turbulent gridpoints are largely redundant, but not completely 
so. 



 
This dataset is therefore biased toward turbulence.  To make a forecast in the real world, RNN 
will have to be run on the complete dataset.  However, it is not believed that the bias towards 
turbulence influences the effectiveness of RNN, or the relationships between predictor 
combinations and turbulence. 
 
 
3. Methodology and implementation of RNN 
 
a. Overview of RNN 
The goal in developing RNN was to implement the Nearest Neighbor (NN) approach in a 
straightforward manner.  The RNN methodology is described in this section at a high level.  
Details, technical and statistical notes, and implementation tips will be deferred to Appendix C. 
 
Applied to turbulence forecasting at AFWA, the goal was to look up past amounts of turbulence, 
given “similar” conditions.  As stated above, if all possible predictor combinations are listed, 
implementation of NN becomes an impossibly large task, due to the extremely large number of 
possible predictor combinations, which can be a larger number than the actual data that is 
collected.  The synthetic data example in section 4 will illustrate this point. 
 
For this study, the number of predictors used to forecast low-level turbulence was not allowed to 
vary.  The number of predictors used in a regression or data mining process can obviously affect 
the results.  In order to limit this study to the understanding of RNN and its potential for 
information extraction, the number of predictors was not allowed to vary.  In addition, four 
specific  predictors were chosen and not allowed to vary, again for the purpose of exploring the 
capability of RNN as a data mining tool. 
 
A simple description of the RNN process follows.  A random gridpoint is chosen from the 
historical archive.  The four predictor values, and the resulting amount of turbulence, were noted 
at the gridpoint.  Gridpoints having values “similar” to the four predictors were found.  This 
group of gridpoints forms a “neighborhood”, a neighborhood in a four-predictor space.  From the 
remaining gridpoints, another random gridpoint is selected (i.e., “random without replacement”), 
and gridpoints similar to the new gridpoint are grouped into a new neighborhood. 
 
Information about the neighborhoods is stored: the predictors used, the predictor values (low and 
high range), the statistical significance as measured by the Student’s T-value, and the amount of 
turbulence that should be forecast.  The “amount” of turbulence was the mean value of 
turbulence; other choices could have been used.  Note that the Student’s T-value is used, not the 
probability that a population is different.  The Student’s T- value is open-ended (not limited 
between 0 and 100%), and for that reason worked better in this study.  The neighborhoods are 



sorted according to their statistical significance.  Table 4 illustrates a listing of some sample 
neighborhoods using the real data of this study. 
 

Table 4.  Sample neighborhoods from RNN using real data. 
a) Top two RNN neighborhoods according to Student’s T-Value 

      Predictor Lowest Highest T-
value Turbulence #gdpts 

Dynamic 232 255 81.91 0.0056 11084 
LapseRate 83 106 

   Wshrparam 232 255 
   Mtnwave 232 255 
   

 
     Dynamic 232 255 79.51 0.008 4088 

LapseRate 232 255 
   Wshrparam 226 249 
   Mtnwave 232 255 
   

      b) “Best” neighborhood with largest negative Student’s T-value, indicating, with high 
statistical significance, turbulence amounts below the mean (climatology). 

Predictor Lowest Highest T-
value Turbulence #gdpts 

Dynamic 0 23 -15.91 0.0011 17309 
LapseRate 231 254 

   Wshrparam 0 23 
   Mtnwave 65 88 
    

To forecast with current data, apply the sorted neighborhoods in order of their Student’s T-value, 
look up the amount of turbulence that should be forecast, and apply that value to matching 
gridpoints in the “current” dataset.  If a gridpoint belongs to more than one neighborhood, the 
one with the best statistical significance is used. 
 
In this implementation, RNN neighborhoods were formed using the development portion of the 
historical data.  The neighborhoods can then be used to “forecast” both the development data 
(which is not “fair”), and the test data.  The test data generally will fit slightly less well than the 
development data, given that the data is adequate and the data mining implementation goes well. 
 
A key design aspect of RNN is that it samples the dataset in order to determine statistical 
neighborhoods.  This is more efficient than a straightforward NN approach of pre-assigning all 
possible combinations of predictor values and combinations of predictors.  Sampling the data 
allows for a much reduced and tractable number of predictor combinations, i.e., neighborhoods.  



The probability of turbulence for each neighborhood is retrieved from this reasonable number of 
combinations. 
 
In the examples shown in Table 4, taken from the real turbulence dataset, the “best” RNN 
combination of all four predictors is when the highest values of the dynamic, wind shear 
parameter, and mountain wave parameter are achieved (bins 232 to 255), but only modest values 
of the lapse rate (bins 82 to 106).  The amount of turbulence forecast is .0056.  The next 
neighborhood states that all four predictors should be at or near their maximum values. 
 
Note that the Student’s T-value is below zero when the probability of turbulence is less than 
climatology, which is 0.0020 in this dataset.  Therefore, the absolute value of the Student’s T-
value was used to rank neighborhoods as the proper indicator of statistical significance. 
 
In Table 4b, the lowest Student’s T-value is -15.91, with a turbulence amount forecast of .0011.  
This is achieved with low values of the dynamic and wind shear parameters, a modest value of 
the mountain wave parameter, and a high value of the lapse rate.  As shown by the large 
(negative) T-value, this is a statistically significant neighborhood, with a large number of 
gridpoints (17309).  With a high amount of confidence, one can forecast a low amount of 
turbulence.  In this case, the forecast turbulence will be low in spite of the spite of the large value 
of the lapse rate. 
 
A key variable in the RNN process is in choosing a bin size for the predictors, which in turn 
determines the number of gridpoints in a neighborhood.  A small bin size is advantageous in that 
it allows for good resolution of situations where small changes of a predictor value results in a 
large change of the predictand.  However, a bin size that is too small will have fewer gridpoints 
per bin, therefore less statistical significance, and may result in wildly varying forecast values.  
With a large bin size, valid details may be lost.  For example, the lapse rate predictor “lapsegd”, 
in Appendix B, has a significant increase in turbulence at the largest “lapsegd” values.  It appears 
that a bin size smaller than 15 is necessary to fully resolve this feature.  So far in the RNN 
design, the bin size will be the same for all predictors.  Future versions of RNN might allow 
different bin sizes for different predictors. 
 
b. Comparison to RF 
A brief comparison is now made of the RNN process to the Random Forest (RF) forecast 
method, with a short explanation of RF.  RF recognizes multiple drawbacks of the use of 
decision trees in forecasting using multiple predictors.  Relevant to RNN, one facet of decision 
trees is that they subdivide datasets using hard threshold values.  As an example, if the Lifted 
Index (LI) is used to forecast lightning, conventional wisdom states that negative (positive) 
values of LI are associated with lightning (no lightning).  A decision tree might divide the dataset 
near zero, with values of e.g. -0.5 going into the “lightning” group, and values of +0.5 going into 



the “no lightning” group.   One can see that it might instead be desirable to place values of -0.5 
and +0.5 into the same category, one that is neither “for” or “against” lightning. The decision 
tree will attempt to mitigate the initial mismatch at a lower level tree split.  Data from Venzke 
2001 illustrating this point is presented in Appendix D. 
 
A novel approach used by RF to mitigating decision tree issues is the use of random numbers to 
choose predictors and predictor combinations, with decision trees as a vehicle.  The use of 
random numbers mitigates drawbacks from the use of hard threshold values.  An important 
aspect of RF is that it creates a large number of decision trees.  The number of trees is not fixed 
but may be on the order of 500 different decision trees, each of them different as random 
permutations of predictors are used to produce them.  The term Random Forest obviously refers 
to a large number of semi-randomly generated decision trees.  To make a real-time or operational 
forecast, data is run through the 500 decision trees.  From the 500 decision trees, some type of 
consensus forecast is used for the “final” forecast. 
 
The RF process, an ensemble of permutations of decision trees, is quite analogous to ensemble 
modeling, known to the meteorology community. 
 
Whereas RNN has “neighborhoods”, RF has “nodes”.  RNN neighborhoods are a group of 
gridpoints with predictors having “similar” values.  The analogous RF features, tree nodes 
(leaves of a decision tree), are also a group of gridpoints with predictors having similar values.  
In Figure 3, the “cell” and “linear system” tree nodes are analogous to RNN neighborhoods. 
 
A gridpoint in the RF technique will have been assigned to dozens, if not hundreds of predictor 
combinations, and an ensemble of them may have more information than the RNN technique.  A 
drawback may be that a consensus forecast used by RF may instead dilute the forecast toward 
climatology, due to the possibility of a large range of forecasts.  No investigation has been done 
to support this speculation. 
 
RF has advantages over RNN.  A significant feature of RF is that it automatically chooses the 
number of predictors and predictor combinations; in fact, these can vary enormously from 
decision tree to decision tree, where RNN has not yet been developed to do this.  RF examines a 
very large number of predictor combinations by repeated sampling of the gridpoints, and 
choosing different predictors for that gridpoint.  In this report, the number of predictors used in 
RNN has been fixed at four.  The purpose of this is to facilitate the understanding of the 
effectiveness of RNN in “data mining” useful information from predictors of low-level 
turbulence, not to study an effective predictor selection technique.  It is acknowledged that 
choosing the number of predictors and predictor combinations to utilize is an integral part of all 
types of human generated, regression, and data mining forecasts.  Predictor selection techniques 
are listed in Table 5.  RF also has an effective means of dealing with missing predictor data.  



This report will not address these issues, but will confine the discussion to the ability and 
effectiveness of RNN in extracting information. 
 

Table 5.  List of commonly used predictor selection techniques in 
regression and data fitting. 

Forward From all remaining predictors, add the best predictor 
Backward Start with all predictors, remove the least significant predictor 

Stepwise A combination of Forward and Backward, using significance 
tests 

Genetic Random permutation: adding, subtracting, or changing a 
predictor 

 
A sample RNN forecast created from data which is not a part of the data collection used in the 
study, is shown in Figure 8. 
 

 
Figure 8.  RNN low-level turbulence forecast from 2014 April 2 06UTC run valid 18UTC. 
 
c. Comparison to k-nearest neighbor clustering 
Of the “Top 10 algorithms in data mining” listed by Wu et al. 2008, k-nearest neighbor (k-nn) 
clustering is the algorithm that is most similar to RNN.  Like RNN, k-nn also uses random 
numbers to initialize clusters, analogous to RNN’s neighborhoods.  K-nn clustering algorithms 
generally require the need to specify a “distance” metric that specifies how closely a candidate 
gridpoint matches an existing cluster.  The distance metric can be problematic, especially when 
predictors have different units of measurement.  For example, how does one determine how 



many joules per kilogram are equivalent to per second of wind shear?  Also, while adding 
gridpoints to clusters, the cluster itself changes, and some iteration must be done.  RNN in 
contrast ignores distance metrics and units of measurement by dividing data into 256 bins, all 
with an equal frequency of occurrence.  RNN neighborhoods are “seeded” at random, but do not 
change as other gridpoints are added.  K-nn clustering generally requires a user to decide how 
many gridpoints are assigned to a cluster; RNN utilizes the Student’s T-value to evaluate the 
significance (i.e., reliability) of a neighborhood.  RNN is intended to be a more direct method of 
data mining; it is meant to look up, in the most direct manner possible, the value of the 
predictand from historical values in in an RNN neighborhood of “similar” gridpoints.  Finally, 
RNN seems to be more suited to produce a quantitative result, and k-nn clustering is more 
naturally suited for classification tasks. 
 
 
4. RNN Experiments and Notes 
 
a. Linearization of predictors 
It is possible to “linearize” predictors of weather events.  Linearization transforms piecewise 
values of a weather predictor to the probability or intensity of the weather event that is expected 
from a historical dataset. 
  
The advantage of linearizing a predictor is that the resulting forecast will have a better fit to the 
predictand than a curve fitting technique.  The general linearization process is to divide a 
predictor into a relatively large number of bins, as many bins as the data appears to statistically 
support, without unnatural variation from bin to bin.  For each bin, the amount of turbulence is 
found by simply looking up the amount of turbulence from historical archives of gridpoints that 
have the same predictor values in the bin.  Graphs of the predictors in this study, linearized, are 
shown in Figures B1-B15 of Appendix B. 
 
From Tables 1-15 in Appendix B, it can be seen that the correlation of single predictors to 
linearized turbulence predictors is, in most cases, significantly higher than the predictor in raw 
form.  It can also be seen from the graphs in Appendix B that dividing the turbulence predictor 
data into 256 categories, a relatively large number with a correspondingly small bin size, appears 
to be reasonably well supported for the turbulence dataset, evidenced by the smoothness of the 
graphs.  If the response is not smooth, one can expand the bin size until consecutive bins have a 
more consistent, more believable response. 
 
Therefore, an important test for RNN is to see if it will, for a single predictor, duplicate the 
straightforward linearizing of that predictor.  RNN was used with single predictors to forecast 
low-level turbulence.  Table 6 shows that a straightforward linearization of the dynamic 
predictor, calculated independently of RNN, has equal skill to RNN, as the correlation of the 



linearized predictor with turbulence were identical, to three decimal places.  The only 
algorithmic difference is that RNN picked predictor bins randomly, while the “straightforward” 
linearization calculated the bins methodically.  A bin size setting of “1” was used, which means 
that each of the predictor’s 256 values were used separately to look up the amount of turbulence 
observed for that predictor value.  An oddity is that the test data fit slightly better than the 
development data; the reverse is normally expected. 
 

Table 6.  Linearizing dynamic predictor without 
and with RNN: correlation coefficient. 
Dynamic Predictor Linearized RNN 

Devt data 0.140 0.140 
Test data 0.145 0.145 

 
 
By extension, it is evident that using two, three, or more predictors with RNN is the equivalent of 
linearizing two, three, or more predictors at once.  This will be true if there is adequate data, and 
if there is actually information contained in multiple-predictor combinations.  This will be 
investigated with further RNN and data mining experiments. 
 
b. RNN with synthetic data 
Two synthetic datasets were created to test the limits of the RNN technique.  Consistent with the 
four predictors used for low-level turbulence, four mock predictors, ranging in value from 0.0 to 
1.0, were created.  As was done with the real dataset, the predictors were normalized to values 
ranging from 0 to 255 by their frequency of occurrence.  The mock response to each predictor by 
themselves is listed in Table 7. 
 

Table 7.  Response to synthetic predictors. 
Predictor 1 Linear with the predictor (“Linear”) 
Predictor 2 Tent-shaped peak in the middle (“Tent”) 
Predictor 3 Spike at the high end (“SpikeRight”) 
Predictor 4 Spikes at both low and high ends (“SpikeBothEnds”) 

 
The mock response to all predictors, in combination, intending to simulate non-linear responses 
that might exist in a real atmosphere, is given by the equation below.  Graphs of the response of 
each individual predictor and the combined predictor set is shown in Figure 9. 
 
 Response = Tent + Linear * SpikeRight  / (SpikeRight+SpikeBothEnds) (1) 
 
Synthetic dataset #1 was created such that predictor a=b=c=d, that is, all predictors have the 
same values, however, this is not true of the response, which varies.  The unnatural aspect of this 



synthetic dataset is that all of the predictors are “low” or “high” at the same time.  This 
experiment nevertheless demonstrates how RNN works. 

 
 

 
a) 

 
b)      c) 

 
d)      e) 

Figure 9.  a) (Large line graph above.)  Synthetic dataset predictand response to individual 
predictors, predictors have normalized values (0 to 255).  b) through e): Combined 
predictor response, shaded, to synthetic dataset #2, versus single predictors. 
 
 



Results of the RNN fitting to the development portion of synthetic dataset #1, and applied to the 
test data, are shown in Table 8a.  Another RNN run (not shown) with a smaller bin size yielded a 
correlation increase to 0.992.  Thus, RNN successfully replicates a synthetic dataset with a non-
linear, multiple-predictor response function to the predictors, nearly perfectly.  The number of 
RNN neighborhoods was 72 with the larger bin size, and 570 with the smaller bin size. 
 

Table 8.  RNN-fitting results to synthetic data. 

       “SIMPLE” SYNTHETIC DATASET #1  "COMPLEX" SYNTHETIC DATASET #2 

 
Unfit gridpoints Correlation 

  
Unfit gridpoints Correlation 

Dev't data 0 0.987 
 

Dev't data 0 0.987 
Test data 0 0.986 

 
Test data 5980 0.977 

 
 
Since synthetic dataset #1 had an unrealistic predictor set, in which all of the predictors had 
low/middle/high range values at the same time, synthetic dataset #2 was created.  Synthetic 
dataset #2 has predictor values that are completely random, ranging from 0.0 to 1.0.  This is also 
unrealistic, in that predictors in any real dataset are likely to be correlated.  Correlations of the 
real turbulence data predictors in this study are in Appendix E.  Synthetic dataset #1 is unrealistic 
in that all predictors have a 100% correlation with each other, and synthetic dataset #2 is 
unrealistic in that the predictors are completely uncorrelated with each other (0% correlation).  
Nevertheless, the synthetic data experiments will demonstrate RNN’s potential to extract 
information from a multiple predictor, single predictand dataset. 
 
For synthetic dataset #2, the number of permutations of 4 predictors with 256 values is 256^4, 
which is 4,294,967,296 combinations.  This is a much larger number of combinations than has 
been actually collected from the real data of this study.  For the experiment, one million random 
gridpoints with random predictor values were generated.  These were divided into a 
developmental and a test dataset by choosing every other gridpoint.  The bin size was set to 25, 
which was chosen after experimentation to allow the data fitting to run to completion in a 
reasonable time.  A bin size of 25 means that each bin covered about 1/10 of the range of a 
predictor. 
 
To minimize the possibility of mistakes, the same code was used to run RNN on the synthetic 
data as was used with the real data used in this report. 
 
The results were impressive.  RNN ran without any computational trouble on synthetic dataset 
#2.  65563 neighborhoods consisting of gridpoints with “similar predictor values” were created 
by RNN.  The developmental data was then fit with the RNN neighborhoods, and finally the test 
data was forecast with the same neighborhoods.  In summary, the “test” data was forecast almost 



perfectly, achieving nearly a 98% correlation coefficient!  A small percentage (5980 of 500,000) 
of the test gridpoints failed to have forecasts.  A backup forecast, climatology, was chosen for 
those gridpoints. 
 
The number of neighborhoods created, 65563, is believed to be extremely high since the 
synthetic data predictors are randomly chosen, and therefore predictors are completely 
uncorrelated.  Real world predictor data will likely have appreciable correlation; therefore RNN 
will select fewer neighborhoods, as more gridpoints will have combinations of predictor with 
similar values. 
 
It is instructive to study the average number of gridpoints in each neighborhood that is generated 
by RNN with the synthetic data.  One might expect that 500,000 gridpoints (in the development 
dataset), divided by 65563 neighborhoods, would result in approximately 7.63 gridpoints per 
neighborhood.  However, a gridpoint can be in several neighborhoods.  Querying the program, 
the total number of gridpoints in neighborhoods was 2,475,219.  Therefore, it seems that a 
gridpoint was typically found to belong to about 5 different neighborhoods.  This is deemed to be 
normal behavior for RNN.  Recall that when making a real-time forecast, if a gridpoint matches 
multiple neighborhoods, the “best” neighborhood is applied, according to the chosen metric, the 
Student’s T-value. 
 
c) RNN with 2, 3, and 4 predictors using real turbulence data 
The goal of creating RNN was to forecast low-level turbulence by extract the maximum amount 
of information from predictors of low-level turbulence.  RNN was run with two, three, and four 
predictors.  RNN using one predictor has already been done via the linearization experiment.  
Table 9 shows the RNN results with varying numbers of predictors and bin sizes. 

 
Table 9.  RNN results with real data.  Best correlation for 
test dataset while fitting to development data, using 1, 2, 

3, and 4 predictors. 

#Predictors Best 
Correlation Bin size 

# RNN 
neighborhoods 

selected 
1 0.145 3 871 
2 0.154 17 3611 
3 0.162 23 6331 
4 0.158 43 8397 

 
Forecastability results with 2, 3, and 4 predictors were slightly better than the best single-
predictor correlation.  The best single predictor was the dynamic term, with a linearize 
correlation coefficient of .145.  The best RNN run came from using three predictors, with an 



independent data forecast correlation of .162, which is almost 12% better than the single best 
predictor. 
 
There is evidence that the fourth predictor is degrading the data fitting, as adding that predictor, a 
simple mountain wave parameterization, failed to increase the correlation from three predictors.  
Possible reasons for this are discussed in Appendix F.  While a strategy to mitigate this should be 
developed for future RNN projects, by noting the problem and being watchful for over-fitting 
due to too many predictors, RNN can be successfully implemented.  As was seen in the synthetic 
dataset, there is still a great potential for RNN to accurately fit complex multiple predictors. 
 
d. RNN Notes 
Using RNN on real data, the development portion, it was noted that RNN slowed greatly while 
categorizing development gridpoints into neighborhoods.  This occurred when RNN was using 
three or more predictors.  Investigation revealed that gridpoints not fit into neighborhoods within 
the first 90% of the process are very “uncommon”, and forming neighborhoods with the last 10% 
of the gridpoints is difficult.  These gridpoints are ones that have unusual combinations of the 
values of three or more predictors.  Examination of the neighborhood output showed two 
patterns.  It seemed that many of the predictors were at their lowest possible bin value, i.e., 
normalized predictor value of “0”.  Also, the predictor combinations near the end of the RNN 
neighborhood grouping process were predominantly forecasts of low amounts of turbulence.  
Two possible reasons for this are that the dataset was biased towards forecasts of turbulence, 
and/or that there are more and disparate combinations of predictors for low turbulence amount 
than for high turbulence amount.  That is, one or two predictors favorable for turbulence are 
negated by the remaining predictors being unfavorable.  An implication of this will be discussed 
in Section 5. 
 
It should be noted that the process of forming neighborhoods appears to be inherently inefficient 
in a computational sense.  Searching an array for combinations of several predictors, each 
predictor having a certain range of values, appears to require a large amount of CPU usage. 
 
 
5. Discussion of the RRN experiments 
 
In applying RNN with multiple predictors of low-level turbulence, only a modest improvement 
of forecast skill was achieved versus the best single predictor.  The correlation coefficient 
between the test data and PIREPS increased from .145 (one predictor) to .162 (three predictors).  
Recall the synthetic datasets show that RNN appears to be extracting the maximum possible 
forecast skill from multiple predictor combinations, even when synthetic dataset #2 was made to 
be intentionally difficult. 
 



For the low-level turbulence forecasts, possible explanations for a low increase of skill using 
several predictors over one predictor are: 
 

1. Model data is inadequate to forecast low-level turbulence 
2. Inadequacies of PIREPs make data mining difficult without modification of the 

methodology 
3. The data is being divided into bin sizes that are too small to be significant, that is, 

statistical degrees of freedom have been exceeded 
4. The geographical density of PIREPS are inadequate to accurately define an area that 

should be forecast as turbulent 
5. Some of the turbulence predictors are ineffective, therefore diluting the information 

content of the better predictors. 
6. The RNN policy of choosing the single “best” neighborhood, if there are multiple 

neighborhood choices, is poor. 
7. The metric, correlation coefficient, is not a proper choice for the development process 

when used for turbulence forecasts. 
8. The predictand was the mean turbulence in an RNN neighborhood.  Emphasizing 

“potential” values of turbulence, such as the maximum turbulence or the maximum 10%, 
may have different results. 

9. The study matches predictors at a model gridpoint with the predictand, but this is an 
inadequate model of turbulence forecasting. 

10. The predictand, a smoothing of turbulent PIREPS, added together, is inadequate 
11. Better predictors exist to forecast low-level turbulence. 

 
Reason 4, the adequacy of PIREP data for development of statistical relationships, is believed to 
be the predominant reason for the low amount of additional skill found with additional 
predictors.  In the subjective opinion of the author, the density and pattern of low-level PIREPS, 
when plotted on a map simply do not match well with troughs, ridges, wind maxima, or any 
other weather elements that our models forecast well.  An exception, not addressed in this report, 
is terrain related features, as turbulence is well known to occur frequently in rugged terrain. 
 
Reason 1 suggests that parameters forecast by computer models simply do not have significant 
relationships to turbulence observed in the atmosphere. 
 
Reason 2 is the admission that a PIREP, or lack of a PIREP, cannot be taken literally as the 
verification at that point in space and time in the atmosphere.  Brown and Young 2000 point out 
that “Because icing and turbulence observations are not consistently available at the same time 
and location, pilot reports do not provide a representative sample to the forecast grid”.  A PIREP 
with turbulence of any intensity is almost surely an indication that turbulence occurred, but only 
literally at that minute in time.  Lucas 2013 from personal experience notes four aircraft landing 



30 seconds apart at an airport can have different amounts of turbulence, ranging from none to 
moderate.  A PIREP of “no turbulence” may therefore only be indicative of no turbulence during 
that minute in time, and cannot be taken to mean that no turbulence should have been forecast.  
The implication is that transferring PIREPS directly to a model grid for data mining is 
inadequate, and that heavy modification of the dataset, based on the reliability, and the space and 
time scope of the PIREP and the predictor conditions, needs to be taken into account.  As an 
example, one might wish to allow a turbulent PIREP to “verify” turbulence for a few hours 
before and after the nominal time of the report, and not to penalize a forecast of turbulence as a 
false alarm during that time period. 
 
Reason 3 concerning small bin sizes is not believed to be significant for the following reason.  
Recall that the primary variable factor in RNN is the size of a predictor bin.  Smaller bin sizes 
allow for more accurate precision, but are not statistically reliable.  The reliability is insured by 
utilizing the independent dataset to select a bin size that produces the highest correlation 
coefficient.  Cross-checking with the so-called independent data is a strong influence on keeping 
bin sizes large enough to be consistent. 
 
Reason 5 suggests that a predictor with little correspondence to turbulence might act as a random 
number generator, essentially diluting valid information content of other useful predictors. 
 
Reason 6 is believed to be an insignificant contribution to the ultimate forecast product.  While 
the difference between two competing forecasts was not examined in detail, it was noted that 
neighborhoods sorted by the Student’s T-Value did have similar forecast values; therefore, it is 
assumed that the contribution to error is small. 
 
Regarding reason 7, a different metric than the correlation coefficient to measure success might 
indicate a larger amount of “success”, for example, emphasizing the Probability of Detection 
(POD) might be desirable in turbulence forecasting.  The correlation coefficient is valuable in 
that it is a metric that is not easily “gamed” by a clever forecaster or by unusual weather 
conditions.  However, it can suffer from “high leverage” data points, since data points that are far 
from the mean contribute according to the square of their error.  In the case of turbulence, nearly 
every turbulent gridpoint will be a ‘high leverage’ data point, having a relatively large influence 
on the correlation coefficient.  For this reason, other metrics should be used to evaluate the RNN 
forecast.  Brown and Young 2000 cover verification statistics as applied to turbulence.  The Joint 
Working Group on Forecast Verification Research website 2013 lists the pros and cons of 
different verification scores in meteorology.  Finally, if turbulence is actually difficult to 
forecast, it may be that a forecaster will simply have to choose a desired level of POD, and the 
forecaster will have to suffer whatever False Alarm Ratio (FAR) that comes with it. 
 



Reason 8: Since PIREPS are believed to have incomplete information about the state of 
turbulence in the atmosphere, it is felt that different data processing of PIREP data, and different 
statistical metrics should be used.  A value such as the upper quartile, or even the highest 10% of 
the turbulence amount found in an RNN neighborhood, might be a technique to mitigate the 
common belief that turbulence is under-reported. 
 
Reason 9 is felt to be a significant issue.  The assumption that a turbulent PIREP occurs because 
of model conditions at the nearest gridpoint can be challenged.  Predictors that instead indicate 
the “worst” condition “in the vicinity” might be helpful.  Matching a PIREP precisely in space 
and time to the corresponding predictor values of the nearest model gridpoint should be relaxed 
in some way, without causing side-effects in the forecast (such as a higher false alarm rate).  
Perhaps if turbulence is observed, the data collected should be the “maximum” model predictor 
value within some distance, and if no turbulence is observed, use the nearest model gridpoint.  
Also, larger scale “pattern matching” predictors, as opposed to gridpoint indices, might be 
appropriate for turbulence forecasting. 
 
Reason 10: The predictand data was a smoothed gridpoint, the value of the single gridpoint being 
proportional to the intensity of the turbulence (1, 2, 3 corresponding to light, moderate, or severe 
turbulence).  This study should be repeated for moderate or greater turbulence, or just severe 
turbulence.  The suggestion is that moderate or greater turbulence might be more predictable, 
where light turbulence is essentially unpredictable. 
 
Reason 11: Recall that several predictors were collected for this study but not examined; of 
those, the terrain elevation (and possible derivations such as terrain roughness), the Panofsky 
index, and the Richardson number, are believed to be effective in forecasting low-level 
turbulence. 
 
What is seen in this study is that the RNN experiments so far do not add a lot of value to 
forecasting low-level turbulence beyond that of the best single predictor, given the conditions of 
this study: multiple predictors and turbulence all taken from the same model gridpoint, valid at 
the same instant in time. 
 
A meteorological aspect is now considered.  The RNN methodology allows for examination of 
the neighborhood data to understand the nature of low-level turbulence forecasting. One might 
ask the question: “are there only contributing factors ‘in favor of’ an event, or are there factors 
that effectively inhibit or even ‘veto’ an event from happening?”  Looking at Student’s T-values 
of the turbulence neighborhoods shows that Student’s T-values can have positive numbers, 
indicating that a neighborhood forecasts a turbulence amount higher than climatology, or 
negative, which forecasts an amount of turbulence below climatology.  There is an interesting 
relationship between high and low forecasts of turbulence, as the magnitude of the Student’s T-



values for high turbulence forecasts are much larger than the T-value magnitude of lower 
forecasts of turbulence.  One might think of these as favorable and unfavorable regimes for 
turbulence.  Judging just from the magnitudes of the Student’s T-values, the “favorable for 
turbulence” regimes are stronger than “inhibitors” of turbulence.  Conversely, there are a large 
number of RNN neighborhoods which suggest that a mix of favorable and unfavorable predictors 
result in a lower-than-average amount of turbulence forecast. 
 
 
6. Summary and conclusions 
 
A new method of data mining was created to extract the maximum amount of forecast capability 
from several predictors of turbulence.  The new method, Random Nearest Neighbor (RNN), was 
applied to several predictors obtained from AFWA weather model gridpoints, and PIREPS of 
turbulence observed at the same gridpoint. 
 
Several aspects of RNN strongly suggest that RNN is an effective information extraction 
paradigm.  RNN has no curve fitting or data structure.  RNN was inspired by RF, but does not 
use decision trees as a vehicle for data fitting.  Instead, RNN “looks up” the amount of 
turbulence from archived data in a fairly direct manner.  The success of RNN in accurately 
linearizing a single predictor (against turbulence) is compelling evidence that RNN is effective in 
extracting information from a historical data collection.  By analogy, RNN essentially linearizes 
a data fit to several predictors.  Finally, the RNN fit to the complex synthetic dataset is 
convincing. 
 
Positive aspects of RNN are that it extracts close to the maximum theoretical information from 
combinations of predictors, that it does so in a direct, understandable manner, it is simple to 
program (under 1000 lines of Interactive Data Language source code), and with the 
transformation of predictors to a scale from 0 to 255 according to frequency of occurrence, has 
no dependence on the physical units and little dependence upon sensitive ranges of predictors. 
 
Drawbacks of RNN are that it does not currently handle varying numbers of predictors and 
predictor combinations, that it runs more slowly while attempting to categories the last 10% of 
the neighborhoods, and that it requires several manually run iterations with varying bin sizes in 
order to optimize the results.  It is expected that future work on RNN would be effective in 
reducing these weaknesses. 
 
The ability of RNN to extract close to the theoretical maximum amount of information from a 
predictor-predictand dataset implies that the RNN methodology could become an important 
standard against which the success of other forecasting paradigms could be measured.  Given 



this bold assumption, RNN could be utilized to understand where practical forecasting 
information exists, and where information is lacking, in a forecasting environment. 
 
The forecasting of low-level turbulence was disappointing.  The combination of four turbulence 
predictors using RNN resulted in only a small improvement over a single predictor.  With 
confidence in RNN as an effective means of information extraction, one must look elsewhere for 
the difficulty in forecasting low-level turbulence.  The primary weakness is believed to be from 
applying  PIREPS as the complete truth over the entire CONUS domain.  The author does not 
believe that PIREPS of turbulence effectively discriminate between turbulent and non-turbulent 
areas, as it is not known whether gridpoints near turbulent reports should be considered turbulent 
or not turbulent.  Finally, it is believed that the use of other verification metrics for turbulence 
verification, beyond the correlation coefficient that was emphasized in this study, may be more 
appropriate for the evaluation of turbulence forecasts. 
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Appendix A 

Predictor selection and information extraction 
 
In this study, the subject of predictor selection methodology was ignored.  It is likely that the 
subject must be addressed with future work on RNN.  Of particular concern is that in this study, 
using four predictors had slightly less skill than three predictors. 
 
Predictor selection is a strategy for selecting and combining several, perhaps dozens of 
predictors, in a regression or data mining task.  There is no simple, clear rule of thumb for the 
number of predictors that should be used in such a task.  Multiple linear regression and other 
regression techniques have commonly used a “forward predictor selection” technique (adds the 
best predictor after trying every available predictor), a “backward predictor selection” (starting 
with all available predictors, deleting the least effective one), and the “stepwise predictor 
selection” (a combination of forward and backward, with predictors being added or deleted 
according to a metric). 
 
RF is perhaps unique among regression and data mining methods, in that it automatically tries all 
(or a very large number) of predictor combinations and all values. 
 
RNN should be refined to utilize a varying number of predictors and predictor combinations.  A 
strategy needs to be developed that either fits into the RNN paradigm, or perhaps modifies a 
portion of it. 

RNN utilizes the test data in order to calibrate the bin size.  This is a bit unusual, as doing so in 
some sense violates the intention of the test data to be completely independent of the 
developmental data.  Also, in this study, the development and the test data were created from the 
even and odd numbered days.  It would be a “fairer” test, in that it would be more realistic, to 
have the development and test data consisting of longer periods of data on the order of months.  
Some care is needed to account for the seasonality of data.  For example, if RNN were to be 
implemented operationally, developmental data might be used from months 1, 2, 4, 5, 7, 8, 10 
and 11, with test data from months 3, 6, 9, and 12.  This would be a realistic test of RNN, in that 
the development and test data are appreciably independent of each other, and there is ample 
opportunity for unusual months or seasons to create realistic difficulties for the forecast system 
as a whole. 

  



 
Appendix B 

Linearization of predictors of low-level turbulence 
 
Figures B1 through B15: graphs of the turbulence response (y axis) of individual predictor 
values, normalized by frequency of occurrence, to the range 0 to 255 (x axis).  See text for 
details on linearization and turbulence amount. 
 
After the graphs, Table B1 lists correlation of predictor to predictand. 
 

 
Figure B1.  Dynamic (wind speed) predictor; turbulence response. 

 



 
Figure B2.  (Model) terrain height; turbulence response. 

 

 
Figure B3.  Lapse rate predictor; turbulence response. 

 



 
Figure B4.  Wind Shear parameter predictor; turbulence response. 

 

 
Figure B5.  Wind shear parameter predictor, Lee filter applied in 2-dimensions; turbulence  
response. 



 
Figure B6.  Wind shear parameter predictor, value not capped (limited); turbulence  
response. 

 



 
Figure B7.  Wind shear parameter predictor, not capped and Lee filter smoother; 
turbulence response. 

 

 
Figure B8.  Mountain wave parameter; turbulence response. 



 

 
Figure B9.  Mountain wave parameter, Lee filter smoother; turbulence response. 

 



 
Figure B10.  Panofsky index; turbulence response.  Gaps in the middle are due rounding of 
model post-processed values of the Panofsky index, and very frequent occurrence of 
Panofsky index in the middle range.  Thus, frequently occurring values, occurring more 
than 1/256 of the time, occupy the same bin, leaving adjacent bins empty.  This is seen in 
other predictors, for example, predictors having frequent occurrences of “zero”. 

 



 
Figure B11.  Richardson number variation 1; turbulence response. 

 

 
Figure B12.  Richardson number variation 2; turbulence response. 

 



 
Figure B13.   Richardson number variation 3; turbulence response. 

 

 
Figure B14.  Year-month-day-hour of verification time (“normalized” on 0-255 scale); 
turbulence response. 



 

 
Figure B15.  Hour of verification (“normalized” on 0-255 scale); turbulence response. 

 



Table B1.  Linearization of predictors to 
turbulence: Correlation coefficient. 

Predictor Dataset Raw Linearized 
dyngd Dev't 0.115 0.140 
dyngd Test 0.116 0.145 

elgd Dev't -0.006 0.065 
elgd Test -0.011 0.058 

lapsegd Dev't 0.054 0.061 
lapsegd Test 0.044 0.046 

maxwspgd Dev't 0.043 0.061 
maxwspgd Test 0.045 0.062 

maxwspleegd Dev't 0.060 0.068 
maxwspleegd Test 0.064 0.072 
maxwspnocap Dev't 0.061 0.079 
maxwspnocap Test 0.066 0.086 

maxwspleenocap Dev't 0.074 0.089 
maxwspleenocap Test 0.079 0.096 

mtnwavegd Dev't 0.012 0.051 
mtnwavegd Test 0.020 0.053 

mtnwaveleegd Dev't 0.062 0.089 
mtnwaveleegd Test 0.065 0.096 

pagd Dev't 0.128 0.151 
pagd Test 0.126 0.154 

ripangd Dev't -0.112 0.137 
ripangd Test -0.108 0.134 

ridlkmaxgd Dev't -0.076 0.089 
ridlkmaxgd Test -0.075 0.083 
ridlkmingd Dev't -0.080 0.091 
ridlkmingd Test -0.071 0.081 

vd8gd Dev't 0.019 0.121 
vd8gd Test 0.029 0.041 
vhrgd Dev't 0.039 0.052 
vhrgd Test 0.042 0.056 

 
  



 
Appendix C 

RNN technical notes for implementers 
 

a) Computational efficiency issues 
Current RF methodology is to sample approximately 2/3 of the dataset, and to sample the dataset 
approximately 500 times.  RNN instead samples the historical dataset essentially one time (the 
caveat is described below).  The RNN approach would appear to have a significant time 
advantage versus RF.  Recall that RF creates ~500 randomly permuted decision trees; the 
strategy is to create 500 forecasts, and to use a consensus value as the final forecast.  It is unclear 
from literature what kind of consensus is appropriate, or whether a consensus forecast is 
appropriate for probability forecasts.  It is also unknown which, RNN or RF, create better quality 
forecasts. 
 
The above paragraph states that RNN samples the archive dataset “one time”.  It turns out that, 
since RNN neighborhoods overlap, that a typical gridpoint may be sampled several times (5 
times was a typical number found in one RNN run), still much less than the 500 times suggested 
by RF literature.  The RNN strategy to select neighborhoods is as follows.  All neighborhoods, 
dozens, hundreds, or thousands of them) area sorted in order of their Student’s T-values.  This 
sorted list of neighborhoods is used, from most significant to least significant, for a “current” 
forecast.  Gridpoints in the target area are found that match the neighborhood.  Once a forecast 
value is assigned to a gridpoint, that gridpoint retains its forecast value, and will not be reset by a 
less statistically significant neighborhood. 
 
As described before, RNN randomly chooses gridpoints that have not yet been assigned to 
neighborhoods.  It turns out that the last unsampled gridpoints, approximately the last 10%, 
become increasingly difficult to assign to neighborhoods, as they tend to consist of unusual 
combinations of predictor values.  A casual examination of these gridpoints suggested that they 
are forecasts of low amounts of turbulence, specifically, less than climatology, with widely 
varying values of predictors.  This makes sense, as the majority predictor values are unfavorable 
to turbulence.  There are, therefore, generally more combinations of predictors that are 
unfavorable to turbulence than are favorable to turbulence.  There is probably an opportunity to 
reduce the amount of categorization of turbulence forecasts by RNN where the forecast of 
turbulence is very low. 
 

b) Selection of predictor bin size 
A variable in the RNN process is to select an appropriate bin size.  Recall that all predictors have 
been transformed into values ranging from 0 to 255.  The same bin size was used for each 
predictor.  This makes the implicit assumption that all predictors are equally sensitive to the 
predictand at all ranges of values, which is potentially untrue.  An effective strategy is to begin 



with a relatively large bin size, such as 50, which runs more quickly.  A bin size of 50 divides 
predictors into roughly 5 categories, which is fairly coarse.  Subsequent trials will use smaller 
bin sizes in an effort to gain forecast skill from critical small ranges of predictor values.  To 
measure the goodness of fit, the correlation coefficient was calculated for both the development 
and the test dataset.  A peak value of the correlation coefficient will be found, that balances the 
coarse sampling of higher bin sizes, and over-sampling that will result from smaller bin sizes. 
 
It is acknowledged that there appears to be a small amount of “overfitting” between the RNN fit 
to the developmental data versus the test data.  As bin sizes become smaller and the number of 
RNN neighborhoods grows larger, the correlation coefficient of the developmental sample grows 
faster than the correlation coefficient of the test data.  This is expected, as the development data 
is being over-fit.  Therefore, the bin size that produces the best correlation coefficient on the test 
data is used as bin size that is likely to be best in the “real world”.  The amount of overfitting is 
small.  The nature of the overfitting is not algebraic in nature, but the statistical risk that with 
more neighborhoods with fewer gridpoints, that some of the neighborhood will “just happen” to 
have values that are not “right”.  It is felt that the utilization of the so-called “test” dataset to aid 
in the selection of bin sizes is an adequate means of avoiding overfitting.  The strategy used by 
the RF process is similar in that over-fit forecasts are found with the test data, however, RF 
utilizes a large amount of semi-random forecasts and over-sampling to detect overfitting.  (TBD: 
this might be wrong). 
 
Note that with very low or very high values of a predictor (that is, predictor values near 0 and 
255), the bin size may be truncated.  If a gridpoint has a value of 255, and the bin size is 21, 
predictor values from 243 to 255 are used.  The number of gridpoints per neighborhood is 
lessened in such cases, making them less statistically significant.  However, the extreme values 
of predictors are often the most critical ones in forecasting weather events.  “Exception coding” 
can be done to identify RNN neighborhoods with predictor values at the extremely favorable end 
of the predictor, but the Student’s T-value suffers because the number of gridpoints in the 
neighborhood is smaller. 
 

c) Backup forecast 
A goal of the RNN process is to adequately sample the development dataset.  Doing so helps to 
insure that a real-time forecast will have a historical precedence, that is, that a new combination 
of predictors will not occur in operational use.  In cases where a matching neighborhood for a 
real time situation is not found, a backup forecast is needed: climatology, interpolation from 
geographically close gridpoints, or a simpler forecast.  Candidates for a “simpler forecast” are 
the best single predictor, which is guaranteed to have a predicted value, or a two-predictor 
forecast, which would have a much reduced risk of a new combination of predictors being found.  
A more satisfying solution would be to look back into the developmental sample to create a new 



“neighborhood”.  The impact of these previously unencountered neighborhoods on forecast 
scores has not been investigated. 
 
  



 
Appendix D 

Issues with decision trees 
 
Decision trees, by their very nature, split the dataset into two portions: favorable and unfavorable 
to the predictand.  There are multiple problems with this.  Values on either side of the split, while 
very near to each other in value, are put into decision tree branches that have the opposite 
forecast (yes vs. no turbulence, for example).  The decision tree then struggles to correct for 
values in the vicinity of the initial split.  In the example from Venzke, Figure D1, making 
forecasts of lightning from rawinsonde data, the initial tree split is with the Showalter Index 
(SSI) value of +2.55.  Lower in the tree, Showalter Index values of -2.52, -0.33, and +5.23 are 
threshold values that further refine the initial tree-split value of +2.55.  Also, the Lifted Index, 
which is similar to the Showalter Index, is used with a splitting threshold value of +1.40. 
 

 
Figure D1.  Example decision tree output from Venzke 2001, Appendix C, page 153.  
Prediction of cloud to ground lightning from indices derived from the Little Rock 
rawinsonde. 
 
It is clear that values of the Showalter Index and Lifted Index in the range of approximately -3 to 
+5 are the most sensitive to probabilities of lightning.  Lower levels of the decision tree must 
correct for hard-set thresholds at higher levels of the tree.  This example shows the need for a 



number of data bins in the sensitive range of a predictor, in this case, values of Showalter Index 
in the -3 to +5 range, with bin sizes of 1 degree Celsius or smaller.  Smaller bin sizes in this 
critical range of values should be used to look up the probability of lightning.  This is essentially 
the RNN approach.  The decision tree attempts to do this, to divide the range of -3 to +5 into 
several categories, but is forced to do so using a binary tree structure. 
 
With predictor data being split at sensitive values, the dataset might be slightly diluted, as some 
of the data in the sensitive range is going into the “no event” branch, and other data in the 
sensitive range is going into the “yes event” branch.  In the Venzke example, data points with a 
Showalter Index value of +2 share the same initial tree branch with data points having a 
Showalter Index value of -5, and Showalter Index values of +3 share a tree branch with 
Showalter Index values of +15.  In the meantime, data points with Showalter Index values of +2 
and +3 are placed into different categories.  This would appear to have the potential to dilute the 
data by categorizing similar Showalter Index values in different tree branches, and widely 
different values of Showalter Index into the same tree branch. 
 
All decision tree methodologies can result in overfitting.  This means that the data is divided and 
subdivided repeatedly, until the final tree nodes have too few data points to be statistically 
significant.  Standard methodologies exist to mitigate this characteristic common to all decision 
tree techniques. 
 
While RF attempts to address the issues listed above, it is forced to use the tree structure to do 
so.  The RNN approach, creating neighborhoods (the equivalent of decision tree nodes) more 
directly, seems to be a purer approach. 
 
The RF method of forming a forecast is to utilized some form of “consensus” forecast from 500 
decision trees, either the most common value (if binary), or an average or median.  This is 
similar to the question encountered by any ensemble methodology, which value is “the single 
value to use”.  The forecast extracted from the ensemble of forecasts naturally depends on the 
weather parameter that is being forecast.  An unproven concern is that using a consensus from a 
number of decision trees, on the order of 500, may degrade the reliability of the forecast, which 
may trend towards climatology, and away from potentially extreme values.  It is believed that 
RNN’s neighborhood approach is a more direct approach, allowing for the more reliable 
forecasting of values away from the average. 
 
  



 
Appendix E 

Correlation between predictors used in this study 
 

Table E1. Correlation between predictors used in the study. 
Correlation Pred #1 name Pred #2 name 

1 dyngd Dyngd 
-0.156 dyngd Lapsegd 
0.594 dyngd maxwspleenocap 
0.305 dyngd mtnwaveleegd 

-0.156 lapsegd dyngd 
1 lapsegd lapsegd 

-0.475 lapsegd maxwspleenocap 
0.249 lapsegd mtnwaveleegd 
0.594 maxwspleenocap dyngd 

-0.475 maxwspleenocap lapsegd 
1 maxwspleenocap maxwspleenocap 

-0.057 maxwspleenocap mtnwaveleegd 
0.305 mtnwaveleegd dyngd 
0.249 mtnwaveleegd lapsegd 

-0.057 mtnwaveleegd maxwspleenocap 
1 mtnwaveleegd mtnwaveleegd 

 
  



 
Appendix F 

Possible reasons for overfitting with too many predictors in RNN 
 
Recall that, using real turbulence data, RNN with four predictors showed slightly less skill than 
utilizing three predictors.  There are four possible reasons for this.  1) The fourth predictor, the 
lee mountain parameter, may not be useful.  The response to the lee mountain predictor, shown 
in Figure A-9, shows a good range of turbulence amount, from approximately .004 to .015, as 
good as any other predictor.  There is however a rather flat response to turbulence over much of 
the predictor range, and this may be the reason that the RNN response is ultimately diluted with 
this predictor included.  (2) The fourth predictor may be highly correlated with other predictors.  
However, the table in Appendix C shows the lee mountain parameter to have the lowest 
correlations to other predictors.  3) With four predictors, a large bin size was required to match 
four predictors at one time.  This possibly degraded the fit to the data, as a bin size that is too 
large will not resolve turbulence responses sensitive to small predictor differences.  4) The 
ability of the dataset, as described, is simply inadequate to support the fitting of four predictors. 
 
 


	Keller, D. L., 1982: A statistical severe weather forecasting technique using satellite soundings and radiosonde data, M.S. thesis, Dept of Atmospheric and Oceanic Sciences, University of Wisconsin, 108 pp.

